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Singular perturbation techniques are used to calculate the migration velocity of a 
spherical particle sedimenting, at  low Reynolds numbers, in a stagnant viscous 
fluid bounded by one or two infinite vertical plane walls. The method is then used 
to study the migration of a pair of spherical particles sedimenting either in un- 
bounded fluid or in fluid bounded by a plane vertical wall. The migration pheno- 
menon is studied experimentally by recording the trajectory of a spherical par- 
ticle settling through a viscous fluid bounded by parallel vertical plane walls. 
Duct- to particle-diameter ratios in the range of 27 to 48 were used with the Rey- 
nolds number based on the particle radius being between 0.03 and 0.136. 

In all cases the particle is observed to migrate away from the walls until it 
reaches an equilibrium position at the axis of the duct. The experimentally 
determined migration velocities agree well with those predicted by the present 
theory. 

1. Introduction 
Existing theories for the behaviour of a spherical particle settling, at  small 

Reynolds numbers, in a viscous fluid bounded by vertical plane walls are based on 
the creeping-motion equations (Faxen 1922; Dean & O’Neill1963; O’Neilll964; 
Goldman, Cox & Brenner 1967a, b ;  Cox & Brenner 1967). Although these 
analyses are able to predict the rotation of and the drag on the particle, they fail 
to reveal the presence of any force tending to move the particle towards or away 
from the wall. The absence of such a lift force is a characteristic of the creeping- 
motion equations and results from the neglect of fluid inertiain the basic equations 
of motion (SaRman 1956; Bretherton 1962). A n  attempt to obtain corrections for 
the inertial effects using the Oseen equations was made by Faxen 1922. However, 
using the Oseen equations to estimate inertial effects to O(Re) (where Re is the 
Reynolds number) has been criticized by Proudman & Pearson (1 957) and Cox 
(1965) because these equations do not give the correct asymptotic behaviour of 
the Navier-Stokes equations to this order in Re. 

In  this paper, the horizontal migration due to fluid inertia of a spherical par- 
ticle sedimenting in a stagnant fluid bounded by one or two infinite vertical 

t Present address: Department of Civil Engineering, Ecole Polytechnique, Montreal, 
Quebec, Canada. 
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plane walls is considered using the method of matched asymptotic expansions. 
This technique considers simultaneously two regions of expansions : an inner 
region surrounding the particle in which viscous effects are dominant and an 
outer region in which both viscosity and inertia are important (Proudman & 
Pearson 1957; Rubinow & Keller 1961; Saffman 1965). It follows that, in the 
present problem, the plane wall can be either in the inner region or in the outer 
region and different situations arise depending on this choice. The cases in which 
the fluid is bounded by one and by two plane walls located within the inner region 
of expansion have been treated respectively by Cox & Hsu (1 976) and Vasseur & 
Cox (1976), the latter situation having also been considered by Ho & Leal (1974). 
In  this investigation the walls are assumed to be located at  a large distance from 
the particle so that they lie within the outer region of expansion. Further, the 
behaviour of two unequal spherical particles settling, at  small Reynolds numbers, 
in an unbounded fluid is considered and also the behaviour of a single isolated 
sphere and of two equal-sized spheres sedimenting in a fluid bounded by a single 
vertical plane wall lying within the outer expansion. Such an investigation is 
important in determining the effect that the interaction between sedimenting 
particles has on their average migration velocity. Finally experiments are per- 
formed which agree well with the theory. 

2. Fundamental equations 
Consider a spherical particle, of radius a, sedimenting with a constant velocity 

V downwards through an incompressible viscous fluid of density p and viscosity 
p. The fluid is assumed to be at rest far from the sphere and bounded by a rigid 
plane vertical wall W at a distance d from the particle, the distance d being 
assumed to be very much larger than the particle radius a (i.e. a/d 1). A rec- 
tangular Cartesian co-ordinate system (r;, ri ,  rh) is chosen with its origin at the 
centre of the sphere and moving with the sphere with the r; axis vertically up- 
wards and the rj: axis directed horizontally away from the wall W so that the wall 
is given by rj: = -d  (see figure 1) .  In  this co-ordinate system the flow is steady 
with the fluid at infinity having the velocity Be, (el, e2 and e3 being unit vectors 
along the r;, Y; and rj: axes respectively). The sphere is assumed to rotate with an 
angular velocity w'. 

The velocity u' and pressure p' (taken to be zero at  infinity) in the fluid then 
satisfy the steady Navier-Stokes and continuity equations, subject to the no- 
slip boundary condition on the sphere and wall together with appropriate 
boundary conditions at infinity. Thus 

pV'2u' - V'p' = pu'. V'U', (2.1) 

V'.U' = 0, 
with the boundary conditions 

u' N Ve, as r'+co, u' = Ye, on W ,  ( 2 . 3 ~ )  

u' = w' xr' on r' =a ,  (2.3b) 

where r' = (ri ,  rh, ri) is the position vector of a general point, and r' = lr' I. 



Lateral migration of spherical particles 

- 1 -  

563 

FIGURE 1. Go-ordinate system used. The effect of the second wall is considered in 311. 

Introducing the Reynolds number Re = aV/v and defining the dimensionless 
quantities u, p ,  r = (rl, r2, r3) and w by 

u = u’/V, p = p’a/,uV, r = r’/a, w = w ‘ a / V ,  (2 .4)  

where Y = p/p is the fluid kinematic viscosity, (2.1)-(2.3) may be written in non- 
dimensional form as 

V2u - V p  = Re u .  V u ,  (2 -5 )  

v.u = 0, (2 .6)  
with 

u - e ,  as r-tm, u = e ,  on W ,  (2 .7a )  

u = w x r  on r = l .  (2 .7b)  

We shall seek u and p as expansions in Re valid for 

Re< 1 .  ( 2 .8 )  

Thus the dimensionless force F( = F’/,uaV) exerted by the fluid on the sphere will 
be considered as an expansion in terms of this parameter. 

3. The inner and outer expansions 

where viscous effects are dominant, are 
The inner or Stokes expansions, valid only in the neighbourhood of the particle 

(3 .1a)  

( 3 . l b )  

u(Re, r )  = u,,(r) + Reul(r) +o(Re), 

p(Re, r )  = r)o(r) + Rep,(r) + o ( W  
19-2 
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(Proudman & Pearson 1957). Substitutinginto (2.5), (2.6) and (2.7b) andequating 
powers of Re, one obtains 

v2u, -vp, = 0, v.u, = 0, 

u,=O on r = 1, 
and 

V2Ul - Vp, = u,. vu,, v. u1 = 0, 

u,=O on r =  1, 

( 3 . 2 a )  

(3.2b) 

(3 .3a )  

(3.3b) 

respectively, where it has been assumed that the sphere does not rotate to these 
orders in Re.The correctness of this assertion for a freelyrotating sphere with no 
external torque acting on it will be verified later, whenit will be shown that the 
angular velocity of the particle due to the wall is of order Re2. The conditions 
imposed on the fields u,, p,, u, and pl are insufficient to determine them uniquely, 
additional conditions at r = oc) being furnished by the matching of the inner and 
outer expansions. 

For the outer expansions, valid only at large distances from the particle, 
dimensionless outer variables 1 = (P,, F2, P 3 )  are defined as 

i: = Rer. (3.4) 

These outer expansions are of the form 

u(Re, r) = el +Re ill(?) + o(Re), 
p(Re, r) = Re2fj1(1) +o(Re2), 

(3.6;a) 

(3.5b) 

the first term in the outer expansion of u being the free-stream velocity el. 
Rewriting (2.5) and (2.6) in terms of outer variables, substituting the outer 

expansions into the resulting equations and equating likeorders of Reshows that 
ii,, p1 satisfy 

which are known as Oseen’s equations. From ( 2 . 7 ~ )  and (3.5) the outer boundary 
conditions satisfied by Ol are 

Q25, -Spl = aiiI/aFl, S.6, = 0, (3.6) 

6,+0 as ?-+GO, i i l = O  on W ,  (3 .7 )  

the inner condition on ill being dictated by the requirement that the outer and 
inner expansions be properly matched. 

4. Zeroth-order inner approximation 
Matching of outer and inner expansions requires that the inner expansion for 

r +m when expressed in outer variables is asymptotically identical to the outer 
expansion for i -+ 0. This requires that 

uo+el as r+oc). (4- 1)  

(4 .2)  

The solution of ( 3 . 2 a )  subject to the boundary conditions (3 .2b )  and (4.1) is 

uo = (I  - gr-1- &r-3) el - 8r1 (r-3 - r-6) r, po == - tr1/r3. 
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The force F, and torque Go (about the sphere’s centre) on the sphere due to uo are 
then 

F, = 6ne1, Go = 0, (4-3) 

the former result, when written in dimensional form, giving the well-known drag 
formula obtained by Stokes (1851). When written in outer variables the velocity 
u, and pressure p ,  take the form 

3F 
+O(Re3), po  = -Re2--1 2 ~ 3 .  

(4.4) 

5. First-order inner approximation 
The first-order inner flow field ul, p1 satisfies (3.3) together with the require- 

ment that it matches onto the outer expansion for r 300. One can therefore ex- 
press this flow field as the sum of two flow fields ugl, pAl and uB1, pBl SO that 

Ui = uAi + uB1 and pi = PA1 + P B l ,  (5.1) 

where uAl, pal is any particular solution of (3.3) while uB1, pB1 satisfies the 
homogeneous creeping-flow equations with uB1 = 0 on r = 1. The velocity field 
ual may be taken to be (Proudman & Pearson 1957) 

u,, = & [(2 - 3r-1 + r2 - r-3 + r4) (1 - 3 ~ ~ 9 - f )  r/r 

+ (4  - 3r-1 +r3 - 2r-*) r-lrl ( r 2 r l  r - el)], (5.2) 

which by symmetry cannot give rise to any force or torque on the sphere. For 
r+GQ 

ual N +? [ - 2r-4, el + (1  - r-2r:) r/r] + O(r-1), 

Re uA1 - &Re [ - 2F-lF1 el + (1 - P 2 P : )  f/i] + O(Re2). 

(5.3) 

which when expressed in outer variables gives 

(5.4) 

In  order to match onto the outer expansion, uB1 must be of order r0 as r 300, since 
terms like rl ,  r2, . . . would match onto terms of order Reo, Re-1, . . . in the outer 
expansion which just do not exist [the term in Reo having already been matched 
onto u,]. Thus as r+m, it  may be shown (Brenner & Cox 1963) that uB1 is of the 
form 

where y is a constant vector. Since uB1 satisfies the creeping-flow equations with 
the no-slip boundary condition on the sphere, it gives rise to a force 6ny and 
zero torque about the sphere’s centre. Thus to order Re the force F and torque G 
on the sphere are 

F = 6n(e1 +Rey+o(Re)),  ( 5 . 6 ~ )  

G = o(Re). (5.6b)  

It is therefore seen that any angular velocity the sphere might have owing to 
the wad1 in the outer region must be o(Re) as we had assumed. Furthermore 

uB1 = y+O(r-l), (5 .5)  
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r+co the asymptotic form of u derived from (4.4), (5.4) and (5 .5)  when 
expressed in the outer variables is 

u N el +Re[ - QP-l(e, + P, P/f2) + &{ - 2i-lPl el + ( 1  - f q / P 2 )  P / i }  

+ y] + O(Re2). (5.7) 

The value of the arbitrary constant vector y in this expression is determined by 
matching onto the outer expansion. 

6. First-order outer approximation 
The first-order outer flow field fi,, F1 satisfies (3 .6 )  subject to the boundary 

condition (3 .7) .  In  addition, it is seen from (5 .7)  that the required matching 
condition on 5, as P -f 0 is 

fil - -$P-l(e, +?,F/i2)  +O(Po), (6 .1)  

which represents the flow field produced by a point force of --re,  at i = 0. 
Hence the first-order outer equations and boundary conditions for ill, 27, may be 
written as 

O2a1-Ofl, - %,/ail = 6ne16(P), O.01 = 0, ( 6 . 2 ~ )  

0,+0 as P-fco, f i l = O  on W ,  (6 .2b )  

To solve these equations we introduce I' and ll, the two-dimensional Fourier 
where 6(P) is the Dirac delta function. 

transforms of the velocity ii, and pressure F1, defined by 

together with a similar equation for l l (kl ,  k,, i3). ii, and fjl are then given by 
inverse Fourier transforms : 

ii,(P) =fa f w  I' (k , ,k , , i3)exp[i(k, i ,+k, i , ) ]dk,dk, ,  (6 .4 )  
-a -a 

and a similar equation for @,(P). Taking the Fourier transform of (6 .2a )  shows 
that r and I1 satisfy 

i (k ,  rl + k, I?,) + ar,/a?, = 0. (6 .6 )  

Multiplying the first component of (6 .5)  by ik,, the second component by ik, and 
adding the resulting equations one obtains 

( k ,  -iq2)(klPl + k , r , )  i - i (klJ?i+k2Yi)  +q211 = (3 /2n) ik16( i3 ) ,  (6 .7 )  

where q2 = kq + ki and the prime refers to differentiation with respect to i3. 
Making use of (6 .6 ) ,  one obtains from (6 .7)  the value of I1 as 

= r; - t2rj + ( 3 p n )  ik, (6 .8)  
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where ta = k? + ki + ik,. Differentiating (6.8) with respect to P, and substituting 
the resulting expression into the third component of (6.5) shows that r3 satisfies 

(6.9) FAv - (2q2 + ik,)  r: + q 2 t T 3  = - (3/2n) ik,  d'(?J. 

This can be integrated and the solution obtained as 

I?, + Ae-@s+ Be-*s+Ce@s+Detps+(3/4n)sgn(P3) (e-QIfaI-e-tlFsl), (6.10) 

where A ,  B, C and D are constants of integration that have to be evaluated from 
the boundary conditions. Substituting the value of r3 given by (6.10) into (6.9) 
one obtains 

II = ik, q- l (A e+'s - C e@s + (3/4n) e+IpsI). (6.11) 

The first and second components of (6.5) can be rewritten as 

r; - t z r ,  = (3/2n) q~,) + ik ,  n, (6.12) 

r ; - t z r ,  = ik, n. (6.13) 

These ordinary differential equations for I?, and r, can be integrated using (6.11) 
to obtain 

I?, = - A i k ,  q-le+'s + G e4's + Cik, q-1 e@s + H etFs 

- (3/4n) {ik,q-le+lFsl - ( ik ,  - 1)  .t-1e--tlFa1}, (6.14) 
and 

I?, = - A i k ,  q-le-4'3 + E e-tF3 + Cik, q-le@s + F et*s 

- (3/4n) {ik, q-1 e-Ql?sl- ik ,  t-l e-tlFal}, (6.15) 

where E ,  F ,  G and H are constants of integration. 

that 
Substituting (6.14), (6.15) and (6.10) into the continuity equation (6.6) shows 

i k , G + i k , E - B t  = 0, i k , H + i k , F + D t  = 0.  (6.16) 

The values of the integration constants A to H in the general solution for 
l' and II given by (6.10), (6.11), (6.14) and (6.15) are determined by using the 
outer boundary conditions (6.2b) on ii, together with (6.16). The flow field 
a,, may then in principle be obtained by taking inverse Fourier transforms of 
r a n d  n. 

7. Forces acting on a sphere in terms of Fourier transforms 
In the following sections the cases of one or two spherical particles sedimenting 

through a stagnant fluid bounded by an infinite plane wall W are investigated. 
For these cases, the expressions for I' are quite complex and it is not always 
possible to invert these Fourier transforms analytically. However, it will now 
be shown that the force F experienced by the particle may be obtained directly 
from r. 

For the sedimentation of a spherical particle in an unbounded fluid, the outer 
boundary conditions (6.2 b)  must be replaced by 

i i i , - t O  as P-tm, (7.1) 
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P. Vasseur and R. G. Cox 

which for i +- 0 is of the form 
3 e  i f  p- -2 

(7.3) Q1= - -  [ -+- i3 ] + $ (2 (1 -+) el + (+) i) + ~ ( i ) .  

If a solid wall or other particles are present, the asymptotic form of 3, as 
i + O  must be given by (7.3) except that now a disturbance flow 6& due to the 
walls or other particles, must be added to it. Since such a disturbance flow is not 
singular as i 3 0, it may be expanded in a Taylor series as 

ti8 = d + O(i ) ,  (7.4) 

where d is the value of Q, at f = 0. Thus as P 3 0, 

3 el P,i: 
01 = - (7 +T) + A (z (1 -3) el+ (-)?I +d + O( i ) ,  (7.5) 

which when compared with (5.7) yields for this case 

y = &+d, ( 7 4  

(7.7) 

so that the force F on the particle at f = 0 given by ( 5 . 6 ~ )  is 

F = 6n{e, +Re (+el + d) + o(Re)}. 

Defining l', as the two-dimensional Fourier transform of the velocity field in 
(7.2) which satisfies the Oseen equation for an isolated point force at  f = 0, we 
see that the Fourier transform of i id  is r - r, so that 

d = limQ, = lim Jym J m  (r - r,) exp [ i (k ,  P, + k2 +,)I dk, dk, 
5-0 :-0 -02 

The value of r, may be obtained in a manner similar to that for I' as 

(I',), = - (3/4n) {iklq-le*~p~~- (ik, - 1) t-le-tlr31}, 

( r,), = - (3/4n) {ik, q-le-Qifal - ik, t-le-tIQ}, 

(7.9a) 

(7.9b) 

(7.9c) 

If a velocity field ti, is defined as the flow satisfying the creeping-motion 
equations ( 3 . 2 ~ )  in an unbounded fluid that results from a point force of 6ne1 at 

(7.10) 
F = 0, i.e. 6, = -Qi-l(e, +i-2ilf) ,  

then its two-dimensional Fourier transform I', may be obtained (Vasseur & Cox 
1976) as (r,), = ( 3 / 8 ~ ) { - 2 q - ~ + k ; q - ~ ( l  -t-qli31)}e-Q~F~~, (7.1 1 a) 

(7.1 1 b )  
( J?& = (3/sn) ik, pi, e-piPsi. ( 7 . 1 1 ~ )  

(r& = + (3/4n) sgn (i3) { e 4 3 I  - e-tlPaI}. 

= (3 /87~)k~k ,q-~ ( l  +q1i3:31)e*lFsl, 
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It may then be shown by direct substitution that 

(I?, - r,)p,+,, dk, dk, = $el. 

Thus the value of d given by (7.8) may be written as 

d = l W  Jm (r - r,),, dkl dk, - 3e19 
- -OD - -OD 

so that the force F on the particle given by (7 .7 )  is 

F = 6 n  { e,+Re S ~ w S ~ ~ r - r , ) , , , d k 1 d k 2 + o ( R e ) ) ,  (7 .14)  

which when written in dimensional form becomes 

- w  
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(7.12) 

(7.13) 

8. Sphere sedirnenting in a stagnant fluid bounded by a plane wall 
In  this section, the motion of a single sphere of radius a sedimenting with a 

velocity V through a viscous quiescent fluid bounded by an infinite vertical plane 
wall W at r; = - d is considered, with co-ordinate axes (defined as in 5 2 )  moving 
with the body so that the fluid velocity at, infinity and on the surface of the wall 
W is ( V ,  0,O). The wall is assumed to be located at such a large distance from the 
particle that it lies within the outer region of expansion (i.e. dV/v  = O(1)) .  Thus 
the outer boundary conditions on a,, j3, are 

B,+O as ?-+a, a1=O on W ,  (8.1) 

so that their Fourier transforms I’, I1 must satisfy 

rl,r2,r3+o as p 3 + a ,  ( 8 . 2 a )  

rl = r2 = r3 = o on f3 = -d*, (8 .2b)  

where d* = d V / v  is the dimensionless distance between the centre of the sphere 
and the wall (d/a) expressed in terms of the outer co-ordinate system defined in 
(3 .4) .  The unknown constants A ,  B, ..., H appearing in the expressions (6 .10 ) ,  
(6.14) and (6.15) for I’ may now be calculated for this case by substituting into 
(8 .2)  and making use of the continuity equations (6.16).  The value of I’ is thus 
obtained as 
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r2= - 
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3 2t ---& [L +7] exp [ - t ( P 3 +  2d*)] 
477 t (t a ) n  

3ik2 t 
W t  - q) P 

+ ( e x ~ [ - q ( f ~ + d * ) - q d * ] + e x p [ - q ( ~ , + d * ) - t d * ] } + ( r , ) , ,  

(8.3b) 

r -  3(t +') (exp [ - q(P3 + 2d*)] + exp [ -t(P3+ 2d*)]} 
- 4n(t - q)  

(8 .3~)  

t a - 3 { - exp [ - q(P3 + d*) - td*] + - exp [ - t(?, + d*) - qd*] 
2 n  t - q  t -q 

where (r,),, (Pv)3  are given by (7.9). 

Lift velocity 
The lift force F; (i.e. the force orthogonal to the direction of motion of the 
particle) is given in the present case by the component of F' in the e3 direction. 
Furthermore, to the lowest non-zero order in the Reynolds number, the lift 
velocity v; may be obtained from F; = 6npav;. Thus from (7.15) one obtains 

v; = VRe 13e3, 
where 

r m  r m  

'3 = J - m  J - m  
{r3-(rs)3)++0dk1dk2. 

Substituting the value of (l?s)3 from (7.11) and P3 from (8.3c), we obtain 

(8.4) 

(8.5) 

-exp[-(k2,+kkg+ikl)fd*])2dkldk,.  (8.6) 

To evaluate this integral the following substitutions are made: 

k,  = p cos #Id*, k, = p sin #Id*, (8.7) 

so that I3 may be written as 

2n (p2+ id*p cos #)* + p  
(exp I: -PI 

I3 =&/J 0 (pa + id*p cos q5)i - p  

-exp [-p2+id*pcosq5)~])2pdpd#. (8.8) 

Although this integral cannot be evaluated analytically, its asymptotic form for 
small and large values of d* may be obtained. 

Thus if the distance d* between the sphere and the wall is small (i.e. d* < l) ,  
one may use the following expansions : 

id* cos q5 d*2 C O S ~  4 id*3 C O S ~  4 c0s4 4 + ... - - 
8P 1 6p2 128p3 + 2 

(pa + id*p cos #)* = p + 
(8.9) 
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and 

(p3 + 6p2 + 15p + 15) + . . . id*3 C O S ~  q5 d*4 C O S ~  q5 
48p2 384p3 (P2 + 3P + 3) + + 

Substituting (8.9) and (8.10) into (8.8) and performing the p and q5 integration, 
one obtains 

1 3  =&(l-%d*'+ ...). (8.11) 

It should be noted that (8.11) is obtained by assuming that the expansions (8.9) 
and (8.10) are valid. This occurs when d*cosq5/p < 1 and thus when d* < p. 
However, the contribution to I3 from the region where the expansions are not 
valid (i.e. where p < d* < 1) is negligible since the integrand in I3 is finite as 
p+O. Substitution of (8.11) into (8.4) yields the lift velocity as 

v; = & (a P / v )  { 1 - #(d ' V / Y ) ~  + . . .}. (8.12) 

The first term in (8.12) was obtained by Cox & Hsu (1976) on the basis of a com- 
pletely different method. This result is also in agreement with the result obtained 
by Oseen (1927) on the basis of the Oseen equations. 

Evaluation of I3 will now be considered for the limiting case where the distance 
d* between the sphere and the wall is large (i.e. d* 1). For convenience (8.8) 
may be rewritten in the form 

3 2n (ip cos q5 +p2/d*)* +p/d** 
I - -- 4md*2/0 10 (ipcosq5+p2/d*)*-p/d**(e"p[-P1 

- exp [(ip cos q5 +p2/d*)*d**])2pdpdq5, (8.13) 
where for large d* 

(ip cos q5 +p2/d*)* = (ip cos q5)* { 1 + $@/id* cos $) -+@/id* cos q5)2 
++&/id* cos q5)3 + . . .}. (8.14) 

Substituting this approximation into (8.13) and performing the resulting p and 
q5 integrations, one obtains 

I 3 - - 8( 3 d* ) - 2 + 9  *(2n)-*K(W*)-#+ - - * ?  (8.15) 

where K(m) is the complete elliptic integral of the first kind. Substituting this 
result into (10.4) one obtains for the lift velocity 

vf = #(a V2/v)  { (v/d V ) 2  + a( v/d V ) i  + . . .}, (8.16) 
where 

a = 3K(3)/(2n)* = 2.21901. (8.17) 

It is interesting to note that the leading term in this expression for the lift velocity 
v; experienced by a sphere sedimenting at  a large distance from a wall does not 
depend on the sedimentation velocity V .  

In  order to obtain a solution for the lift velocity valid fcr the entire range of 
values of d*, a numerical integration of (8.8) was undertaken. The results are 
presented in figure 2,  where the migration velocity, normalized by aV2/v = V Re, 
is plotted as a function of the variable d*( = dV/v). A positive value of v; was 
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a v/v 
FIQURE 2. Lift velocity experienced by a, sphere sedimenting in a fluid 

boundsd by a plane wall. 

obtained for all d*, indicating that the sphere always moves away from the wall. 
It is seen that for values of d* < 0.2 (i.e. when the particle is in the vicinity of the 
wall), the sphere migrates with a constant velocity, namely v; /VRe = 3/32, as 
predicted by (8.12). For larger values of d*, the migration velocity decreases 
continuously and tends to zero as d*+oo. The results given by (8.12) and (8.16) 
are also included in this graph for comparison. 

Drag ,force 
The drag force F& experienced by the particle is given, in the present problem, by 
the component of F' in the el direction. Thus, from (7.15), one obtains 

F& = GnpaV{l+ReI, +...}, (8.18) 

where r m  r m  

(8.19) 

Substituting the value of r l  from (8.3a) into (8.19) and evaluating the resulting 
integrand for P, + 0, one obtains 

-t 
Y - - Y  - 

where ( I?*), and (rs)l are defined by (7.9) and (7.11) respectively. 

(9.12) as 
The value of the second integral in the right-hand side of (8.20) is given by 

/YmSm { ( r v ) l - ( r s ) l } ? r ~ d k l d k 2  = 9.  (8.21) 
- m  
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i 
(a ) 

Inflow 

FIGURE 3. Disturbance flows for large d*. (a )  Flow due to particle and its image in vertical 
wall. (b)  Boundary layer on the wall showing related inflow and outflow resulting from 
volume flux changes. (c )  Induced potential flow due to inflow and outflow from boundazy 
la,) er. This flow causes a drag reduction on the particle. 

Introducing the parameters defined by (8 .7)  into (8 .20)  and making use of (8.21) 
one obtains 

-4xe-(x+~)] ip -dpd$, cos $ (8.22) 
x - P  

where x = ( p2 + ipd* cos $)*. (8.23) 

The asymptotic forms of Il for small and for large values of d* may be found in a 
manner similar to that used for 13. Thus one may obtain 

Il - &d*-l+#+ ... as d*-+O, (8.24) 

and Il N ${l-Pd*-&+ ...} as d*+oo, (8.25) 

where /3 = 3 ( 2 n ) - t { E ( & )  -&K(&)}  = 0.50698. 

Substituting (8.24) into (8.18), it is seen that the drag force P& experienced by a 
sphere sedimenting in the neighbourhood of a plane wall ( a  < d < v /V)  is 

P& = 6n,unV{l + Q  R e  + A u l d  + . . .}. (8.26) 

In the limit Re -+ 0, this reduces to 

3'; = GnpuV(1 ++" a/d+ ...I, (8.27) 
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FIGURE 4. Dra.g force experienced by a sphere sedimenting in a fluid 
bounded by a plane wall. 

which agrees with the values obtained by Lorentz (1907) and by Faxen (1922) on 
the basis of the creeping-motion equations (Happel & Brenner 1965). Substi- 
tuting (8.25) into (8.18), one obtains the drag force on a sphere at a large distance 
(a  Q v/V Q d )  from the plane wall as 

FA = GnpaV(l+ # Re - #p(a/d) (v/d V)% + . . .}. (8.28) 

It is interesting to note that, unlike the situation when d* is small, the presence of 
the wall causes a reduction in the drag force on the sphere. This surprising result 
may be explained by noting that the inflow and outflow of fluid from the boundary 
layer over the wall can induce a potential flow which close to the sphere is locally 
in the direction of the sphere's motion (see figure 3). 

The numerical solution of the integral in (8.22) has been carried out and the 
result is presented in figure 4, where for comparsion the values for small and large 
d* given by (8.26) and (8.28) have been included. 

9. Interaction between two spherical particles 
In  this section the motion of two spherical particles sedimenting at  small 

Reynolds numbers in a quiescent unbounded viscous fluid is considered. The two 
spherical particles of radii a and b (which will be referred to as spheres a and b 
respectively) are assumed to  move with instantaneous velocities V and V, down- 
wards and are allowed to rotate as they fall with zero torque acting on them.Then 
their angular velocities co; and coi would be o(Re) as was discussed in $ 5. As in $2  
Cartesian co-ordinate axes ( r i ,  r;,  r i ) ,  with origin at the centre of sphere a, are 
chosen such that the ri direction is vertically upwards. The position of the centre 
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of sphere b with respect to these axes is taken to be at (r i ,  rb, r;) = (s, h, c). The 
distance 1 between the particle centres is assumed to be very much larger than the 
particle radius a (i.e. a/l 4 1) and the particles are supposed to be sufficiently 
separated so that sphere b is located in the outer region of expansion of sphere a 
(i.e. ZVIv = O( 1)). In  this co-ordinate system the flow is steady provided that the 
inequality ( V -  V,)/V < 1 is satisfied (Vasseur 1973) and the fluid at infinity has 
the velocity ( V ,  0 ,O) .  The velocity field ii,, g1 for the present problem satisfies the 
Oseen equations and matches onto inner expansions a t  both sphere a and sphere 
b. The matching of this first-order outer expansion onto the inner expansion at 
sphere u requires that iil, behave as i. + 0 as though a point force acts on the 
fluid equal in magnitude to the drag on sphere a. Similarly matching onto the 
inner expansion at sphere b requires that ii,, $1 behave in the vicinity of sphere b 
as though a point force acts equal to the force sphere b exerts on the fluid. 

- afi,pi., = 6ne, {a(?) + K6(Pl - s*) 6(P, - h*) 6(P3 - c*)}, (9.1) 

Thus, for the present problem ii,, @l satisfy 

?%, 

?.iil = 0, (9.2) 

i i l + O  as P + c o ,  (9.3) 

where s* = S V / Y ,  h* = hV/v, c* = cV/v, (9.4) 

and where K = V, b/& a. (9.5) 

together with the boundary condition 

Thus the Fourier transforms I', rl of ii,, g ,  satisfy 

where 

together with r+o as P , + * ~ .  (9.9) 

By a suitable choice of axes (so that the rl, r3 plane contains the spheres) h* may 
be taken to be zero. Then (9.6)-(9.9) may be solved in a manner similar to that for 
the case considered in 0 8, as 

I?, = -(3/4n){iklq-l(a,+Ka,e~)+(ikl-  l)t-l(a,+Ka,ec)), (9.10) 

(9.11) I?, = - (3/4n) ik, {q-l(al + Ku, ec) + t-l(a, + Ka, d)},  

r3 = (3/4n){sgn(P3) (a,+a,)+sgn(i.,-c*)K(a,+a,)e?, (9.12) 

rl = (3/4n) ik, q-l{a1 + Ka, ec}, 
where 

(9.13) 
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Substituting (9.10)-(9.13) into (7.2) and performing the resulting integrals one 
obtains 

5 1 -  - - 3 ; - e  T{  1 %+?)(el + a5 P) +8-1 e+Q-bK(e, + a6R)> + %{F--~P + KR-~R}, 
(9.16) 
(9.17) 

(9.18 a)  
a5 = P-’(P+2), a6 = 8-2(8+2) .  (9.18 b )  

By expanding the expression for ii,, as given by (9.17), about P = 0, one obtains 

6, = - z P - l (  el + r”, F/P2) + & {2( 1 - PI/?) el + (1 - P V P )  a/?} 

p1 = - #{il r“-3 + KR, a-3>, 

s 
where 

R = (p1 -S*)e, + ~ , e ,  +(f3  -c*)e3, R = I R ~ ,  

- (3K/41*2) sin 8{2 - ( I *  + 2 - Z*/sin 8) exp [ - +Z*(sin 8 + i)]} el 
- ( 3K/2Z*,) cos 8{ 1 - (+Z* + 1) exp [ - @*(sin 8 + I)]) e3 + . . . , (9.19) 

where I* = ZV/v is the dimensionless distance @/a) between the sphere centres 
expressed in terms of the stretched variables and 8 is the angle made by the line 
joining the sphere centres with the horizontal. Thus 

sin8 = s*/Z*, cos8 = c*/Z*, I* = ( c * ~ + s * ~ ) * .  (9.20), (9.21) 

By comparing (9.19) with (7.5) the value of d may be obtained, which when 
substituted in (7.7) yields the drag force Fi on sphere a as 

F& = 6npaVC1 +#Re -$(a/ZZ*) Ksin 8{2 - (Z* + 2 - Z*/sin 8) 
xexp[-$Z*(sin8+1)]} +...I, (9.22) 

and the lift force Fj as 

Fj = - tnpa V(a/ZZ*) K cos 8{2 - (Z* + 2) exp [ - @*(sin 8 + I)]} + . , . . 
(9.23) 

The lift velocity v; is obtained from (9.23) by means of Stokes’ law: 

V; = 1 P ; l S ~ p .  (9.24) 

From these results it is observed that for two equal-sized spheres ( K  = 1): 
(i) If they are sedimenting in the same horizontal plane (8 = 0) ,  the lift velocity 

of sphere a is 
v; = --$(up) V(Z*)-1(2 - (Z* + 2) exp ( - $Z*)}, (9.25) 

which is negative for all I * ,  so that the spheres are repelled from each other. 
Furthermore the drag force on each sphere is 

F& = 6 n p  V{ 1 + Q Re - $(./I) exp ( - $Z*)}, (9.26) 

(ii) If they are sedimenting vertically one above another, the drag force on the 

(9.27) 

so that they sediment faster than an isolated sphere of the same size. 

leading sphere is 

and on the trailing sphere 

F& = 6npaV{1 +QRe-$(a/ZZ*) (1  -e-r)}, 

F i  = 6npa V{ 1 + QRe - & / I } ,  (9.28) 
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so that each sphere sediments faster than an isolated sphere. Furthermore, the 
velocity of the trailing sphere exceeds that of the leading sphere by 

#(all) V ,  (l*)-l(e-Z* - 1 --l*)) 

where V, is the sedimentation velocity of an isolated sphere. Since this is positive 
for all I*, it follows that the trailing sphere always catches up the leading sphere. 

(iii) The above results (9.25)-(9.28) agree with those obtained by Oseen 
(1927) except that now the term #Re appears in the expressions for the drag 
force. Furthermore the values of F i  agree with that obtained by Proudman & 
Pearson (1957) in the limit of I* 3 0 0 .  

(iv) For general positions of the spherical particles the rate of separation of the 
particles in the e, direction is 

6(a/l) Vcos 8(l*)-l(4 - (1* + 2) e-tZ*2 cosh (@* sin S)}. 

This is positive and thus represents a repulsion between the particles for (a )  
1* --t 00 with 8 fixed ( + ~tr in-) and (b )  I* -+ 0 for all 8. However it is negative for 
intermediate values of I* near 8 = f in- owing to fluid flux into the wake behind 
particles. 

(v) The mean migration velocity of the particles in the e, direction is 

-%(all) Vcos8(1*)-1(1*+2)e-z*12sinh (*l*sin8), 

which is negative for 8 > 0 and positive for 6 < 0. This represents a migration in 
the same direction as that experienced at zero Reynolds number (Goldman, Cox 
& Brenner 1966). 

(vi) The mean drag force on the spheres is 

6n-,uaV[1 + Q  Re -~(a/1){(1+2/1*)sin8sinh(~l*sin8) + c o s h ( ~ l * ~ 0 ~ 8 ) } e - ~ * ~ ~  

so that in all relative positions the mean drag force is reduced, showing that the 
mean sedimentation rate is always greater than that for an isolated sphere. 

10. Two spheres sedimenting in a fluid bounded by an infinite plane 
wall 

In  this section the motion of two unequal spherical particles settling at small 
Reynolds numbers through aviscous quiescent fluid bounded by a vertical infinite 
plane wall W is considered. 

Thus we have the situation considered in $ 9  except that now the fluid is 
bounded by a wall at r; = - d  say. Thus the first-order outer flow field 01, g1 
satisfies the Oseen equations (9.1) and (9.2) with the boundary conditions 

O,+O as i3+.00, 0 1 = 0  on is= -d*,  (10.1) 

where d" = dV/v .  

The Fourier transforms I?, lI of ii,, g1 then satisfy (9.6)-(9.8) with the boundary 
conditions 

(10.2) rl,r2,r3+o as i,:3300, 

rl = r2 = r3 = 0 on i, = -a*. (10.3) 
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These equations may be solved in a manner similar to that used in $ 8 to obtain 

+nr3 = ( t  + p) (t  - p)-1 {b, e-df's+zd*) + b, e--t(f'a+2d*)} 

- 2(t - q)-le-(t+nM'{qb, e-wa + tb, e-QP.} 

+ sgn(i, - c*)  (e-Qtf'a**I - e-Wa+*I) eh, 

+ sgn P, (e-df'd - e4f'sI) 

(10.4) 

where b,=  l+Kexp(-qc*+A), b, = l+Kexp(-tc*+A) (10.5) 

and A is given by (9.8). Substituting (10.4) and (7.11) into (8.5), one obtains the 
value of 13, which when substituted into (8.4) yields 

+ Sgn (c*) (e-W*I - e-tlC.1 e-Z(kiS*+k&*) dk, dk,. (10.6) 

It should be noted that we are referring here only to the component of the lift 
in the e3 direction. Cases in which the spheres are aligned along the co-ordinate 
axes will now be investigated and it will be seen that for certain limiting cases 
(10.6) can be integrated analytically. 

)I I 

Motion of two spheres with their line of centres along the rj, axis 

The lift veIocity v; produced by the fluid on sphere a may be obtained, for this 
situation, by letting s* = h* = 0 in (10.6). This yields 

v; = VRe (Itl + It2 +It3], (10.7) 

(10.8) 
where 

(10.9) 

(10.10) 

The integrals in (7.8)-(7.10) may be evaIuated by numerical methods. How- 
ever various asymptotic forms of (10.7) may be obtained in a manner similar to 
that discussed in $8  for (8.6) and (8.20). Thus for sphere a located close to the wall 
W while sphere b is at a large distance from W (i.e. for d*+O, c* -too), the lift 
velocity v; of sphere a is 

v; = &VRe{i -#(dV/v)2} -Kav(d2/c4) (a,(cV/v)i + g}, (10.11) 

where = 45{E(fr) - 4K(4)}/4Jn = 2.68869. ( 10.12) 
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The first term in (10.11) represents the lift force on sphere a in the absence of 
sphere b (see (8.12)) while the second represents the small correction due to the 
presence of the sphere b. 

Similarly it may be shown that, if the two particles a and b are interchanged, 
that is sphere b is in the vicinity of the wall W while sphere a is located at a large 
distance from it, so that d * + m  and c*+d*-+O, then the migration velocity 
experienced by sphere a is 

V; = (av/d2) [${I + a , ( ~ / d V ) f } + K d - ' ( c + d )  { ~ ~ 3 ( d ? ' / ~ ) f + 6 } ] ,  
where 

(10.13) 

L Z ~  = 3K(#)/,/(2n) = 2.21901, a3 = 9{E(t$) - iK(i)} / , /n  = 2.15095. 
(10.14) 

The second term in (10.13) represents the effect of the sphere b on the migration 
of sphere a. This is seen to be a small effect (since c* +d* - to  and d* -+a) which 
tends to zero as the sphere b approaches the plane wall W .  

Defining A, = c*/d*, other asymptotic forms for the lift velocity w; may be 
obtained similarly as follows: 

(i) Both spheres close to wall (c*, d* + 0 )  : 

v; = ?'Re{& - $K(A, + 2)-2} for left-hand sphere (A, > 0), ( 1 0 . m )  

(10.15 b)  

vim = ?'Be{& + $K(& + I)/(& + 2)2), (10.15~) 

where, in (10.15c), d* has been taken as the dimensionless distance from the 
wall to the nearer sphere. 

= ?'Be{& +$K(A,+ 1) (A, + 3) / (Ac +2)2} for right-hand sphere (A,  < 0), 

the mean sphere lift velocity vim being 

(ii) Spheres well separated from wall and from each other (c*, d * - + a ) :  

v; = (av/d2) {# - 6K(Ac + 1,111; (A, + 2)2 for left-hand sphere (A, > 0) 
( 10.16 a)  

= (av/d2) {# + 3K(A: + 2A, + 2 ) / 4  (Ac + 2)2} for right-hand sphere (A, < 0) 
(10.16b) 

vim = (av/d2) {&j + 3/16(h, + 1)2 + 3K/2(AC + 2)2). (10 .16~)  

(iii) Spheres close to each other but at large distance from wall (c*+O, 

( 1 0.1 7 a)  

= 3(av/d2) [1 +K{1 + * ( ~ V / V ) ~ } ]  for right-hand sphere (10.17b) 
with 

w;, = #(av/d2) ( 1  + K).  (10.17 c) 

Thus when the two particles are close to each other so that c* is small the effect of 
the second particle is to increase the mean migration of the first particle by a 
factor of (1 + K ) .  Thus the effect of a second particle is considerable, the mean 
migration velocity of a pair of particles being twice that of an isolated particle for 
two similar spheres ( K  = 1) when c* is small. This will occur even when the 

with 

d * + m ) :  
v; = $(av/d2)  [ 1 + K{ 1 - +(d V / V ) ~ } ) ]  for left-hand sphere 
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FIGURE 5. Lift velocity experienced by (a)  the left-hand sphere and (a) the right-hand 
sphere of a pair of spheres sedimenting with their line of centres along the ri axis in the 
presence of a plane wall. (c) Their mean lift valocity. 
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separationdistancec* between the particles is very much larger than the particle 
size. 

The migration velocity vi given by (10.7)-( 10.10) was evaluated numerically 
for a pairof similarspheres(i.e. K = l) ,  theresults being presented in figures 5 (a) 
and (b )  in which the migration velocity w; normalized with respect to VRe is 
plotted as a function of d* for different ratios of the distance between the wall and 
thereference sphere and the distance between the sphere centres. Figure 5 (c) gives 
in a similar fashion the values of the mean migration velocity vim. These results 
show agreement with the asymptoticresultsgiven by (10.15), (10.16) and (10.17). 
It is to be noted how large an effect particle interaction has on migration velocity. 
For example, the mean migration velocity (see (10 .15~)  and figure 7) for A, = 4 
(d / (d  + c) = 0.2) is 55.6 % higher (for small d*) than for an isolated particle. 

Motion of two spheres with their line of centres along the r; axis 

The lift velocity experienced by sphere a can be obtained, for this situation, by 
putting s* = c* = 0 in (10.6)) which then reduces to 

t+p(e-qd* -e - td* )2 (1  +Ke-ikah*)dkldk2. (10.18) 
4n 

Lettingh, = h*/d*, the various asymptotic forms of thisresult may beobtainedas 
follows : 

(i) Both spheres close to wall (h*, d* -+ 0) : 

w; = VRe{& + 3K/4(4  + A;)*) for either sphere. 

wi = (av/d2) {# + 3K/(4 +hi)#} for either sphere. 

( 10.19) 

(10.20) 

(ii) Spheres well separated from wall and from each other (h*, d* 3 GO) : 

(iii) Spheres close to each other but at large distance from wall (h*+O, 

d*-+GO): wi = #(av/d2) (1 + K )  for either sphere. (10.21) 

The integral (10.18) has been evaluated numerically for the case of two equal- 
sized spheres ( K  = l) ,  the results obtained being presented in figure 6. Again 
these results agree with the asymptotic forms given by (10.1 9), (10.20) and (10.21) 
and it is observed that particle interaction has a large effect (but not as large as 
for particles lying on the r; axis) on the mean migration velocity, which is 51.2 % 
higher (for small d*)  than for an isolated particle for A, = 1.5 (d/(d + h) = 0.4). 

Motion of two spheres with their line of centres along the r; axis 

The migration velocity experienced by sphere a may be obtained, for this situa- 
tion, by letting c* = h* = 0 in (10.6)) which then reduces to 

Letting As = s*/d*, thevariousasymptoticformsof this result maybe obtainedas: 

v; = VBe [& + gK(4 + A:)-& {6A, (v/d V )  + (2 - A:)}], (10.234 

(i) Both spheres close to wall (s*, d* 3 0 )  : 
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d V / v  

PIUIJRE 6. Lift velocity experienced by two spheres sedimenting with thsir line of centres 
along the r; axis in the prssence of a plane wa,ll. 

this giving the lift velocity on the lower or upper sphere according to whether A, 
is positive or negative. The mean lift velocity vim is thus 

(10.23 b) vim = VRe{& + 3K(2 - Ai)/2(4 + Ai)s}.  

(ii) Spheres well separated from wall and from each other (s*, d* +=a) : 

v; = (av/d2) (8 + 3K/(4 + A;)#} for either sphere. (10.24) 

(iii) Spheres close to each other but at large distance from wall (s*+O, 

v; = +(uv/dz) (1 + K )  for either sphere. (10.25) 

The integral (10.22) was evaluated numerically for the case of two equal-sized 
particles ( K  = 1) and the results are presented in figures 7(a) and 7(b). It is seen 
that there is agreement between these results and the asymptotic forms given by 
(10.23), (10.24) and (10.25). As d*+ 0, the non-dimensional lift velocity v;/VBe 
is observed to  tend to infinity except for the cases A, = 0 (d/(d+6) = 1) and 
A, = co (d/(d+s) = 0). This effect, which iscaused bythe second term in (10.23a), 
gives rise to a lift velocity which for a fixed A, is proportional to a V/d .  Thus, since 
this is proportional to the sedimentation velocity V and independent of v, it  is an 
effect which would occur even at  zero Reynolds number and in fact one would 
expect such a lift velocity for this present situation. However if the mean lift 
velocity vim of the spheres is calculated (see figure 7c) then vim/VRe remains 
bounded as d*+O as is indicated in (10.23b). It is interesting that unlike the 
situations where the line of centres lies along the rh or rj axis, the mean lift 
velocity for the present case for A, > J2 (0 < d/(d + 5) < 0.4142) isless than for an 
isolated sphere (for small d*), being a minimum at A, = ,/6(d/(d+s) = 0.2899) 
when the lift velocity reaches a value which is 20.2 yo less than that for an iso- 
lated sphere. However for A, > 4 2  (d/(d+s) > 0.4142) the mean lift velocity is 

d*+oo): 
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FIGURE 7. Lift velocity experienced by (a) the lower sphere and (b )  the upper sphere of a 
pair of spheres sedimenting along their line of cantrm in a fluid hounded by a plane wall. 
(c) Their mean lift velocity. 
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higher than for an isolated sphere, being 28.6 yo higher than that for an isolated 
sphere at  A, = 1 (d/(d +s) = 0.5). It is also noted that, whether the line of centres 
is along the r;, ri or r; axis when they are close to each other and far from the wall, 
their lift velocity is double that of an isolated sphere (see (10.17c), (10.21) and 
( 10.25) ). 

11. Sphere sedimenting in a stagnant fluid bounded by two plane walls 
In  this section, the motion of a single sphere of radius a sedimenting with a 

velocity V through a viscous quiescent fluid bounded by two infinite vertical 
plane walls is considered. A co-ordinate system (ri, r;l, r;) is chosen as in $2 
(figure 1). The left-hand plane wall is at r; = -d as before and the distance 
between the two parallel plane walls is I ,  the distances d and 1 - d being assumed 
to be very much larger than the particle radius a. As before the flow is steady 
with the fluid velocity at infinity being V = ( V ,  0 ,  0). It is assumed that the 
conditions a/d < 1, a V/v  4 1, and 1 V / v  = O( 1)  are satisfied. Thus, for the present 
problem Gl, fll satisfy (6.2) except that W now represenh both walls. 

In  order to solve Oseen's equations with the point force we introduce, for 
convenience, a new co-ordinate system (pl, r,, p 3 )  whose origin is shifted from 
the sphere centre to  the left-hand side wall so that 

r ,  = F l ,  r, = t,, F, = F3 +a*, 
where d* = d V/v is the dimensionless value of the distance between the centre of 
the sphere and the left-hand side wall expressed in terms of the outer variables. 
The Fourier transforms r and II satisfy (6.5) and (6.6) with the obvious replace- 
ment of &(?,) by d(?, - d*),  while the corresponding transformed boundary con- 
ditions are 

(1  1.1 a)  

rl = r, = r3 = o on r3 = z*, (1 1.1 b )  

where Z* = ZV/v is the dimensionless distance (Z/a) between the two plane walls 
expressed in terms of the stretched outer variables. 

These equations may be solved in a manner similar to that for the case con- 
sidered in Q 6 to obtain 

rl = r, = r3 = o on r, = 0, 

rl = -Aik,q-le-@a +Ge-tFa++Cik,q-le@a+Het's- (3/47~){ik,q-le-91~a"*1 
- ( ik ,  - 1) t-1 e-tlFa-d*ll }, (11.2) 

3 
47T 

n = i k ,  q - l (A  e-@a - Ce@a +-e-QlSa-d*l), 

where A, B, C, D, E,  F, G and H are constants of integration. 

(11.4) 

(11.5) 
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Using the boundary condition (1 1.1 a )  with equations ( 1  1.2), (1 1.3) and (1 1.4) 

A + B + C + D = (3/4n) (e-Qd* - e-td* 1 2  (11.6) 

-Aik,q- l+ E +Cik ,q- l+F = (3/4n)  ( ik ,p - l e~d ' - ik , t - l e - td ' ) ,  (11.7) 

- A i k ,  q-l+ G + Cik, q - l+  H = (3/4n)  ( ik ,  q-l e-@* - ( ik ,  - 1) t-le-td'). 

one obtains the following relations : 

Similarly, from boundary condition (1 1.1 b) ,  one obtains 
(11.8) 

3 ik ,  
$ = VBe e 3 I a  1- x{cosh [ ( t  +q) d*] - cosh [(t - q) d*] 

- w  

+cosh[(t-q) (I*-d*)] 

- cosh [(t + q) (Z* - d*)] + sinh qZ* sinh [t(Z* - 2d*)] + sinh tZ* 
x sinh [q(Z*- 2d*)])dk,dk2, (11.14) 

where A = 4tq-(t+~)2~~~h[(t-q)Z*]+(1-q)2~0~h[(t+q)2*] .  
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i 

d V / v  

FIQURE 8. Lift velocity w; exporienced by a spherical particle sedimenting in a fluid 
bounded by two vcrticel plane walls. 

For the special case of a sphere lying midway between the two plane walls 
(i.e. I = 2d), the integrand in (11.14) reduces to zero and the sphere experiences 
no lift force as expected. In  general, however, the integral appearing in (11.14) 
cannot be determined analytically and a numerical procedure must be used. Such 
a numerical evaluation of (1 1.14) has been performed on an IBM 360 computer, 
the results obtained being presented in figure 8, where the migration velocity 
normalized with respect to VRe is plotted as a function of the variable d* = d V / v  
for different values of the parameter (d*/Z*) = (d/Z), i.e. for different positions of 
the spherical particle relative to the walls. Only the values of (d/Z) between 0 and 
0-5 are shown in this graph since the motion of the particle is symmetrical about 
(d/Z) = 0.5. The positive values of v;/ VBe imply that the particle moves away from 
the walls until it  reaches an equilibrium position midway between the two plane 
walls.It isnotedthatforsmallvaluesofd*(i.e.d* < 0-2) the lift velocitytends toa 
constant for each value of (d/Z). 

The migration velocity experienced by a spherical particle sedimenting in a 
fluid bounded by a single plane wall (i.e. (d/Z) = 0 )  has been studied by Cox BE 
Hsu (1976) on the basis of a completely different theory. It was assumed, in their 
analysis, that the particle was located close enough to the wall to be inside the 
inner region of expansion. Their result, namely vi/VRe = &, is shown in this 
graph and is seen to be valid for values of d* < 0.2 only. 

It should also be noted that the value of the migration velocity as calculated 
here is independent of whether the sphere rotates or not as long as its angular 
velocity is o(Re) as Re + 0. As has been shown, this is the case for a freely rotating 
sphere [and also obviously for a sphere prevented from rotating by an external 
torque]. 
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12. Experimental 
The radial migration phenomenon was studied by observing the trajectory of 

single rigid spherical particles released into a stagnant, Newtonian fluid bounded 
by parallel vertical plane walls. 

The test section used for this purpose consisted of a transparent, 9 feet long, 
vertical duct, with a rectangular internal cross-section of size 1.2 in. (between the 
narrowly spaced walls) by 7.5 in. (between the widely spaced walls) resulting in an 
aspect ratio of 6. With such an aspect ratio the effects of the two widely spaced 
walls on the particle were expected to be negligible. 

The particle when placed in the mid-plane between the widely spaced walls was 
observed to remain in the mid-plane while it migrated towards or away from the 
narrowly spaced walls. This migration was observed by viewing along a direction 
parallel to the narrowly spaced walls. A t  various positions along the length of the 
channel, a set of hairlines lightly etched on the inside front surface of the channel 
aided in locating particles in the narrow direction. These hairlines were coloured 
with indelible ink for improved visibility. 

The fluid in the test solution consisted of 69.7 % glycerol and 30.3 % dis- 
tilled water by weight, resulting inaspecificgravityof 1.181. Because theviscosity 
of the test fluid is sensitive to temperature changes as near isothermal conditions 
as can be achieved are required within the test section. In the present study this 
was done by circulating water in a cooling jacket surrounding the test section. 
This resulted in a nearly uniform temperature of the test fluid which was meas- 
ured directly with thermometers located at the top and at the bottom of the test 
section. Further it w a  found that the variation of temperature during an experi- 
ment was negligible. 

The five spherical resin particles used in the experiments were selected from a 
mixture of particles of different sizes. The diameter of the particles, ranging from 
2-47 x in., was determined from micrometer measurements 
across fifty different diameters for each particle. All particles were soaked for 
several weeks before use to avoid diameter changes accompanying their swelling 
resulting from water absorption. 

A vacuum release system, in which a particle held onto the tip of a hypodermic 
needle by the suction provided by a filter pump and released by breaking the 
vacuum, was found to be suitable for the controlled release of a particle. This 
particle injector was placed above the test section and was designed to inject a 
particle at any required position. Particles weresupplied to this needle through a 
sealable door. 

The trajectory of the particle was recorded by a camera travelling along verti- 
calI-beams (7 feet long) parallel to the duct thus permitting the shaft-driven 
camera mount to follow the particle over the entire length of the test section. 
Usingtwo&h.p., 250r.p.m.electricmotorsconnected to the drivingshaft bya 2: 1 
gear reduction unit, cameraspeeds of 0 to 0-01 ftls could be obtained. By matching 
the camera speed to that of a particle in the section, thelatter can be maintained in 
the centre of the field of view and examined for as long as was desired. Limit 
switches were used to reverse the direction of the camera at each end of its travel. 

in. to 4.4 x 
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FIODRE 9. Experimsntally observed position of sphere: 
v = 2 4 4  x lo-* fta/s, 
V = 5.81 x ft/s, Re = 0-072. 

a = 0.0363 in., 

0 60 120 180 240 300 360 420 

Time (8 )  

FIGURE 10. Exporimentally observed position of sphere: 
v = 1.75 x 10-1 ftZ/s, 
Y = 6.28 x 10-3 ftp, 

a = 0.0311 in., 
Re = 0.093. 

The camera used in the experimental study was a 35 mm Nikon model F which 
was aligned normal to the front face of the channel and was rigidly attached to the 
metal rail described in the above paragraph. The camera lens, a micro-Nikhor 
auto 1 : 35 F = 55 mm, produced a subject area of 1.93 in. by 1-45 in. All data 
were recorded with Kodak high speed ektachrome film (ASA-160) at setting f/32. 

The particle motion was analysed by projecting the slides onto a screen using a 
cine Kodak Ektagraphic projector, a constant magnification factor of 14.5 being 
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achieved. Particle trajectories and velocities were determined from successive 
slide measurements. 

Complete details on the experimental apparatus, procedure, and method of 
data reduction are given by Vasseur ( 1  973). 

A few examples of the experimental data obtained in this study are shown 
graphically in figures 9 and 10. These graphs are typical plots of the radial 
position of a particle from the wall, in inches, as a function of time, in seconds, €or 
various experimental conditions. Solid lines, in these plots, represent smooth 
curves drawn through the experimental points. These plots clearly demonstrate 
the migration phenomenon and it is seen that the migration, which is relatively 
large near the wall, decreases rapidly as the particle approaches the axis of the 
test section. It is also interesting to note that according to figure 9 a particle 
sedimenting in the neighbourhood of a plane wall migrates away from the wall 
with a constant velocity. Such a behaviour is qualitatively in agreement with the 
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present theory, which predicts that a particle located in the neighbourhood of a 
plane wall migrates with a constant velocity v; = & VRe. Although the data are 
not suBcient to settle the matter definitely, i t  seems that there exists a dis- 
crepancy between the theoretical constant 2% and the experimentally meas- 
ured constant. However this is not surprising since the present theory is not 
expected to be valid when the particle is so close to the wall that it  almost makes 
contact with it. 

Migration velocities were calculated from the trajectory data obtained in the 
experimental investigation by numerically fitting a curve through consecutive 
points on the radial position-time diagram and evaluating the slope of this curve. 
In  this manner the radial velocity of the particles was calculated as a function of 
time. Then from the plots of the radial position versus time, it is possible to 
obtain the-migration velocity as a function of the radial position. Typical results 
are presented in figure 11, in which the calculated migration velocity v;, nor- 
malized with respect to VRe, is presented as a function of the dimensionless 
distance between the wall and the particle centre d* = (d V/v)  for various values 
of the ratio (d/Z) of the distance between the particle centre and the wall and the 
distance between the two walls. The theoretically predicted curves appear on the 
plots as solid lines and it is seen that the theoretically predicted values of the 
migration velocity v; agree well with the measured values. 

13. Conclusions 

wall, it was found that: 
(a) For an isolated sphere sedimenting in a fluid bounded by a vertical plane 

fi) the sphere always migrates away from the wall; 
(ii) the drag force on the sphere is increased by the presence of the wall when 

the sphere is near the wall (d* is small) but is decreased when the sphere is far 
from the wall (d* is large). 

( b )  For an isolated sphere sedimenting in a fluid bounded by two vertical 
plane walls : 

(i) the particle migrates away from the walls until it  reaches an equilibrium 
position mid-way between the walls; 

(ii) the experimental study of the migration of rigid spherical particles 
sedimenting in a stagnant viscous fluid, although not extensive, provides new 
information about the migration phenomena. The observed migration rates, 
obtained by measuring the trajectories of the particles, are found to be in good 
agreement with those predicted by the present theory. The discrepancy between 
the theory and the experiments, observed in the vicinity of the wall, is due to the 
fact that the present theory is not expected to be valid when the particle is too 
close to the wall when the required condition a/d < 1 is not satisfied. 

( c )  For a pair of equal spheres sedimenting in an unbounded fluid: 
(i) there is a repulsion between them if they sediment with their line of centres 

horizontal, their sedimentation velocity being higher than that of an isolated 
sphere; 
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(ii) the trailing sphere catches up the leading sphere if their line of centres is 
vertical, their mean sedimentation velocity being higher than that of an isolated 
sphere; 

(iii) if their line of centres is neither horizonta nor vertical, then there is a 
mean horizontal migration of the spheres. 

(d) For a pair of equal spheres sedimenting in a fluid bounded by a vertical 
plane wall: 

(i) the mean migration velocity of a pair of spheres is away from the wall even 
though an individual sphere of a pair may move towards the wall; 

(ii) the mean migration velocity is considerably different from that of an 
isolated sphere even when the sphere separation is of the order of their distance 
from the wall; 

(iii) when the two spheres are close to each other, their mean migration velo- 
city is twice that of an isolated sphere. However at large separation with their 
line of centres in the vertical direction their mean migration velocity can be less 
than that of an isolated sphere by up to 20.2 %. 

These results indicate that the effect of a second particle on the migration 
velocity experienced by a pa.rticle is considerable. Thus it is expected that, for 
the case of a cloud of sedimenting particles or a suspension of sedimenting 
particles in a fluid, each particle will experience a migration velocity which will be 
considerably different from that of an isolated particle. 

This work was supported by the National Research Council under Grant 
no. A7007. 
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